Question #2f091

1 Answer
Aug 23, 2016

We will use the following:

  • tan(theta) = sin(theta)/cos(theta)tan(θ)=sin(θ)cos(θ)
  • sec(theta) = 1/cos(theta)sec(θ)=1cos(θ)
  • tan^2(theta)+1 = sec^2(theta)tan2(θ)+1=sec2(θ)
  • sin(2theta) = 2sin(theta)cos(theta)sin(2θ)=2sin(θ)cos(θ)

With those:

(12tan(a))/(1+tan^2(a)) = 6(2tan(a))/(1+tan^2(a))12tan(a)1+tan2(a)=62tan(a)1+tan2(a)

=6(2tan(a))/sec^2(a)=62tan(a)sec2(a)

=6(2tan(a)*cos^2(a))/(sec^2(a)*cos^2(a)=62tan(a)cos2(a)sec2(a)cos2(a)

=6(2sin(a)/cos(a)*cos^2(a))/(1/cos^2(a)*cos^2(a))=62sin(a)cos(a)cos2(a)1cos2(a)cos2(a)

=6(2sin(a)cos(a))=6(2sin(a)cos(a))

=6sin(2a)=6sin(2a)