Question #ff82b Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Nov 15, 2016 sintheta=-3/5,180 < theta <270 The angle theta lies in the third quadrant. Where costheta,sectheta and csctheta-> -ve and tantheta and cottheta->+ve So csctheta=-5/3 costheta=-sqrt(1-sin^2theta)=sqrt(1-9/25)=-4/5 sectheta=-5/4 tantheta=sintheta/costheta=(-3/5)/(-4/5)=3/4 cottheta=4/3 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 1327 views around the world You can reuse this answer Creative Commons License