Question #adcfb

3 Answers
Sep 13, 2016

= 1/(2 sqrt 3)

Explanation:

lim_(x->0) (sqrt(3+x)-sqrt3)/x

= lim_(x->0) (sqrt(3)(1+x/3)^(1/2)-sqrt3)/x

By Binomial Expansion, with 0 < abs x " << " 1

= lim_(x->0) (sqrt(3)(1+x/6 + O(x^2))-sqrt3)/x

= lim_(x->0) sqrt(3)/6 + O(x)

= sqrt(3/36) = 1/(2 sqrt 3)

Oct 21, 2016

(Alternate approach, using L'Hospital's Rule).
sqrt3/6

Explanation:

L'Hospital's Rule: if we have an indeterminate form 0/0, we need differentiate the numerator and the denominator and then take the limit.
Given is the problem
lim_(x->0) (sqrt(3+x)-sqrt3)/x
We observe that when we take the limit and insert x=0, the expression becomes 0/0. Applying the above stated rule we get
lim_(x->0) (d/dx(sqrt(3+x)-sqrt3))/(d/dxx), rewriting numerator in the exponent form
lim_(x->0) (d/dx((3+x)^(1/2)-sqrt3))/(d/dxx)
lim_(x->0) (1/2(3+x)^(-1/2)xx1)/1
Now taking the limits
1/2(3+0)^(-1/2)
=>1/(2sqrt3)
Rationalizing the denominator we get
sqrt3/6

Oct 21, 2016

"Rationalize" the numerator.

Explanation:

((sqrt(3+x)-sqrt3))/x * ((sqrt(3+x)+sqrt3))/((sqrt(3+x)+sqrt3)) = ((3+x)-3)/(x(sqrt(3+x)+sqrt3))

= x/(x(sqrt(3+x)+sqrt3)) = 1/(sqrt(3+x)+sqrt3)

lim_(xrarr0)1/(sqrt(3+x)+sqrt3) = 1/(sqrt(3+0)+sqrt3) = 1/(2sqrt3)