Question #55c95

2 Answers
Sep 18, 2016

In the range x in [0,2pi]x[0,2π]
color(white)("XXX")x=(2pi)/3 or (4pi)/3 or piXXXx=2π3or4π3orπ

Explanation:

2sin^2(x)-3cos(x)-3=02sin2(x)3cos(x)3=0

rarr 2(1-cos^2(x))-3cos(x)-3=0color(white)("XXX")2(1cos2(x))3cos(x)3=0XXX(using Double Angle formula)

rarr -2cos^2(x)-3cos(x)-1=0color(white)("XXX")2cos2(x)3cos(x)1=0XXX(simplifying)

rarr (2cos(x)+1)(cos(x)+1)=0color(white)("XXX")(2cos(x)+1)(cos(x)+1)=0XXX(factoring)

rarr cos(x)=-1/2color(white)("XXX")cos(x)=12XXXorcolor(white)("XXX")cos(x)=-1XXXcos(x)=1

For x in [0,2pi]x[0,2π]
color(white)("XXX")x= pi+-pi/3color(white)("XXXX")XXXx=π±π3XXXXorcolor(white)("XXX")x=piXXXx=π

[Add +n*2pi, n in ZZ if you want not to restrict x to the range [0,2pi]

Sep 18, 2016

2sin^2x-3cosx-3=0

=>2-2cos^2x-3cosx-3=0

=>2cos^2x+3cosx+1=0

=>2cos^2x+2cosx+cosx+1=0

=>2cosx(cosx+1)+1(cosx+1)=0

=>(2cosx+1)(cosx+1)=0

So

2cosx+1=0

=>cosx=-1/2=cos((2pi)/3)

:.x=2npi+-(2pi)/3 " where "n in ZZ

Again

cosx+1=0

=>cosx=-1=cos(pi)

:.x=2npi+pi=(2n+1)pi " where "n in ZZ