2sinx + 2cosx + 2sin2x + 1 = 02sinx+2cosx+2sin2x+1=0
2sinx + 2cosx + 2(2sinxcosx) + 1= 02sinx+2cosx+2(2sinxcosx)+1=0
2sinx + 2cosx + 4sinxcosx + 1 = 02sinx+2cosx+4sinxcosx+1=0
(2sinx + 2cosx)^2 = (-1 - 4sinxcosx)^2(2sinx+2cosx)2=(−1−4sinxcosx)2
4sin^2x + 4cos^2x + 8sinxcosx = 1 + 8sinxcosx + 16sin^2xcos^2x4sin2x+4cos2x+8sinxcosx=1+8sinxcosx+16sin2xcos2x
4(sin^2x + cos^2x) + 8sinxcosx - 1 - 8sinxcosx - 16sin^2xcos^2x = 04(sin2x+cos2x)+8sinxcosx−1−8sinxcosx−16sin2xcos2x=0
4 - 1 - 16sin^2xcos^2x = 04−1−16sin2xcos2x=0
3 = 16sin^2x(1 - sin^2x)3=16sin2x(1−sin2x)
3 = 16sin^2x - 16sin^4x3=16sin2x−16sin4x
0 = -16sin^4x + 16sin^2x - 30=−16sin4x+16sin2x−3
0 = -16sin^4x + 4sin^2x + 12sin^2x - 30=−16sin4x+4sin2x+12sin2x−3
0 = -4sin^2x(4sin^2x - 1) + 3(4sin^2x - 1)0=−4sin2x(4sin2x−1)+3(4sin2x−1)
0= (-4sin^2x + 3)(4sin^2x- 1)0=(−4sin2x+3)(4sin2x−1)
sinx= +- sqrt(3)/2" AND "sinx = +-1/2sinx=±√32 AND sinx=±12
x = 60˚, 120˚, 240˚, 300˚, 30˚, 150˚, 210˚, 330˚
However, instantly, checking in the original equation, you will notice many of the solutions are extraneous. The actual solutions are as follows:
x = 210˚, x = 330˚,x = 120˚
Hopefully this helps!