Question #787c0

1 Answer
Sep 25, 2016

4sin4xsin2xsinx=sin3x4sin4xsin2xsinx=sin3x

=>2*2sin4xsin2xsinx=sin3x22sin4xsin2xsinx=sin3x

=>2(cos(4x-2x)-cos(4x+2x))sinx=sin3x2(cos(4x2x)cos(4x+2x))sinx=sin3x

=>2cos(2x)sinx-2cos(6x))sinx=sin3x2cos(2x)sinx2cos(6x))sinx=sin3x

=>sin(2x+x)-sin(2x-x)-(sin(6x+x)-sin(6x-x))=sin3xsin(2x+x)sin(2xx)(sin(6x+x)sin(6xx))=sin3x

=>sin3x-sinx-sin7x+sin5x=sin3xsin3xsinxsin7x+sin5x=sin3x

=>sin7x-sin5x+sinx=0sin7xsin5x+sinx=0

=>2cos6xsinx+sinx=02cos6xsinx+sinx=0

=>sinx(2cos6x+1)=0sinx(2cos6x+1)=0

So sinx=0sinx=0

=>x=npi" where "ninZZ

Again

=>(2cos6x+1)=0

=>cos6x=-1/2=cos((2pi)/3)

=>6x=2npi+-(2pi)/3" where "n inZZ

=>x=(npi)/3+-(pi)/9" where "n inZZ