Question #7cfc8

1 Answer
Oct 5, 2016

Proof below

Explanation:

First we will find the expansion of #sin(3x)# separately (this will use the expansion of trig functions formulae):
#sin(3x)=sin(2x+x)#
#=sin2xcosx+cos2xsinx#
#=2sinxcosx*cosx+(cos^2x-sin^2x)sinx#
#=2sinxcos^2x+sinxcos^2x-sin^3x#
#=3sinxcos^2x-sin^3x#
#=3sinx(1-sin^2x)-sin^3x#
#=3sinx-3sin^3x-sin^3x#
#=3sinx-4sin^3x#

Now to solve the original question:
#(sin3x)/(sinx)=(3sinx-4sin^3x)/sinx#
#=3-4sin^2x#
#=3-4(1-cos^2x)#
#=3-4+4cos^2x#
#=4cos^2x-1#
#=4cos^2x-2+1#
#=2(2cos^2x-1)+1#
#=2(cos2x)+1#