Question #c070f

1 Answer
Oct 9, 2016

Using the double angle formulas and combing the fractions and simplifying the algebra

Explanation:

to prove
sec(2x)+tan(2x)=(1+tan(x))/(1-tan(x))sec(2x)+tan(2x)=1+tan(x)1tan(x)

take LHS

sec(2x)+tan(2x)= 1/cos(2x) +2tan(x)/(1-tan^2(x))sec(2x)+tan(2x)=1cos(2x)+2tan(x)1tan2(x)

=1/(cos^2(x)-sin^2(x))+2tan(x)/(1-tan^2(x))=1cos2(x)sin2(x)+2tan(x)1tan2(x)

Divide every term of the first fraction by cos^2(x)cos2(x)

=(1/cos^2(x))/(cos^2(x)/cos^2(x)-sin^2(x)/cos^2(x))+2tan(x)/(1-tan^2(x))1cos2(x)cos2(x)cos2(x)sin2(x)cos2(x)+2tan(x)1tan2(x)

=sec^2(x)/(1-tan^2(x))+2tan(x)/(1-tan^2(x))=sec2(x)1tan2(x)+2tan(x)1tan2(x)

=(1+tan^2(x))/(1-tan^2(x))+2tan(x)/(1-tan^2(x))=1+tan2(x)1tan2(x)+2tan(x)1tan2(x)

=(1+2tan(x)+tan^2(x))/(1-tan^2(x))=1+2tan(x)+tan2(x)1tan2(x)

=(1+tan(x))^2/((1-tan(x))(1+tan(x))=(1+tan(x))2(1tan(x))(1+tan(x))

cancelling a (1+tan(x)) (1+tan(x)) bracket

=(1+tan(x))/(1-tan(x)=1+tan(x)1tan(x)

as required.