Question #93fd2

2 Answers
Oct 9, 2016

We will use the following trigonometric identities:

  • sec(θ)=1cos(θ)
  • tan(θ)=sin(θ)cos(θ)
  • sin(2θ)=2sin(θ)cos(θ)
  • cos(2θ)=cos2(θ)sin2(θ)
  • cos2(θ)+sin2(θ)=1

as well as the following special products:

  • a2+2ab+b2=(a+b)2
  • a2b2=(a+b)(ab)

sec(2x)+tan(2x)=1cos(2x)+sin(2x)cos(2x)

=1+sin(2x)cos(2x)

=1+2sin(x)cos(x)cos2(x)sin2(x)

=cos2(x)+sin2(x)+2sin(x)cos(x)cos2(x)sin2(x)

=(cos(x)+sin(x))2(cos(x)sin(x))(cos(x)+sin(x))

=cos(x)+sin(x)cos(x)sin(x)

=cos(x)+sin(x)cos(x)cos(x)sin(x)cos(x)

=1+sin(x)cos(x)1sin(x)cos(x)

=1+tan(x)1tan(x)

Oct 9, 2016

LHS=sec2x+tan2x

=1cos(2x)+tan2x

=1+tan2x1tan2x+2tanx1tan2x

=1+tan2x+2tanx1tan2x

=(1+tanx)2(1+tanx)(1tanx)

=1+tanx1tanx=RHS

proved