Question #93fd2
2 Answers
Oct 9, 2016
We will use the following trigonometric identities:
sec(θ)=1cos(θ) tan(θ)=sin(θ)cos(θ) sin(2θ)=2sin(θ)cos(θ) cos(2θ)=cos2(θ)−sin2(θ) cos2(θ)+sin2(θ)=1
as well as the following special products:
a2+2ab+b2=(a+b)2 a2−b2=(a+b)(a−b)
=1+sin(2x)cos(2x)
=1+2sin(x)cos(x)cos2(x)−sin2(x)
=cos2(x)+sin2(x)+2sin(x)cos(x)cos2(x)−sin2(x)
=(cos(x)+sin(x))2(cos(x)−sin(x))(cos(x)+sin(x))
=cos(x)+sin(x)cos(x)−sin(x)
=cos(x)+sin(x)cos(x)cos(x)−sin(x)cos(x)
=1+sin(x)cos(x)1−sin(x)cos(x)
=1+tan(x)1−tan(x)
Oct 9, 2016
proved