Question #93fd2
2 Answers
Oct 9, 2016
We will use the following trigonometric identities:
sec(theta) = 1/cos(theta) tan(theta) = sin(theta)/cos(theta) sin(2theta) = 2sin(theta)cos(theta) cos(2theta) = cos^2(theta)-sin^2(theta) cos^2(theta)+sin^2(theta) = 1
as well as the following special products:
a^2+2ab+b^2 = (a+b)^2 a^2-b^2 = (a+b)(a-b)
=(1+sin(2x))/cos(2x)
=(1+2sin(x)cos(x))/(cos^2(x)-sin^2(x))
=(cos^2(x)+sin^2(x)+2sin(x)cos(x))/(cos^2(x)-sin^2(x))
=(cos(x)+sin(x))^2/((cos(x)-sin(x))(cos(x)+sin(x))
=(cos(x)+sin(x))/(cos(x)-sin(x))
=((cos(x)+sin(x))/cos(x))/((cos(x)-sin(x))/cos(x))
=(1+sin(x)/cos(x))/(1-sin(x)/cos(x))
=(1+tan(x))/(1-tan(x))
Oct 9, 2016
proved