Question #93fd2
2 Answers
Oct 9, 2016
We will use the following trigonometric identities:
#sec(theta) = 1/cos(theta)# #tan(theta) = sin(theta)/cos(theta)# #sin(2theta) = 2sin(theta)cos(theta)# #cos(2theta) = cos^2(theta)-sin^2(theta)# #cos^2(theta)+sin^2(theta) = 1#
as well as the following special products:
#a^2+2ab+b^2 = (a+b)^2# #a^2-b^2 = (a+b)(a-b)#
#=(1+sin(2x))/cos(2x)#
#=(1+2sin(x)cos(x))/(cos^2(x)-sin^2(x))#
#=(cos^2(x)+sin^2(x)+2sin(x)cos(x))/(cos^2(x)-sin^2(x))#
#=(cos(x)+sin(x))^2/((cos(x)-sin(x))(cos(x)+sin(x))#
#=(cos(x)+sin(x))/(cos(x)-sin(x))#
#=((cos(x)+sin(x))/cos(x))/((cos(x)-sin(x))/cos(x))#
#=(1+sin(x)/cos(x))/(1-sin(x)/cos(x))#
#=(1+tan(x))/(1-tan(x))#
Oct 9, 2016
proved