Question #93fd2

2 Answers
Oct 9, 2016

We will use the following trigonometric identities:

  • sec(theta) = 1/cos(theta)
  • tan(theta) = sin(theta)/cos(theta)
  • sin(2theta) = 2sin(theta)cos(theta)
  • cos(2theta) = cos^2(theta)-sin^2(theta)
  • cos^2(theta)+sin^2(theta) = 1

as well as the following special products:

  • a^2+2ab+b^2 = (a+b)^2
  • a^2-b^2 = (a+b)(a-b)

sec(2x) + tan(2x) = 1/cos(2x)+sin(2x)/cos(2x)

=(1+sin(2x))/cos(2x)

=(1+2sin(x)cos(x))/(cos^2(x)-sin^2(x))

=(cos^2(x)+sin^2(x)+2sin(x)cos(x))/(cos^2(x)-sin^2(x))

=(cos(x)+sin(x))^2/((cos(x)-sin(x))(cos(x)+sin(x))

=(cos(x)+sin(x))/(cos(x)-sin(x))

=((cos(x)+sin(x))/cos(x))/((cos(x)-sin(x))/cos(x))

=(1+sin(x)/cos(x))/(1-sin(x)/cos(x))

=(1+tan(x))/(1-tan(x))

Oct 9, 2016

LHS=sec2x+tan2x

=1/cos(2x)+tan2x

=(1+tan^2x)/(1-tan^2x)+(2tanx)/(1-tan^2x)

=(1+tan^2x+2tanx)/(1-tan^2x)

=(1+tanx)^2/((1+tanx)(1-tanx))

=(1+tanx)/(1-tanx)=RHS

proved