Question #9c537

1 Answer
Mar 1, 2017

- 56^@20; - 123^@80
236^@20; 303^@80

Explanation:

Call M (2, -3), the point on the terminal arm. Consider the right triangle OMm with:
Vertical leg: mM = - 3
Horizontal leg: Om = 2
The hypotenuse OM = sqrt(2^2 + 3^2) = sqrt13
Call angle < mOM = t.
t is in Quadrant 4.
We get:
sin t = - 3/sqrt13 = - 3/3.61 = - 0.83
Calculator gives t = - 56^@20
Trig unit circle gives another t that has the same sine value (-0.832):
t = - 180 + 56.20 = - 123^@80.
Answers in interval (-2pi, 0):
- 56^@20 and - 123^@80
Answers in interval (0, 2pi)
t = 180 + 56.20 = 236^@20 and
t = 360 - 56.20 = 303^@80