Prove that (1+sinx)/(1-sinx)=(secx+tanx)^2?

3 Answers
Oct 13, 2016

Using the identities

  • sin^2(x)+cos^2(x) = 1 => 1-sin^2(x) = cos^2(x)
  • (a-b)(a+b) = a^2-b^2

we have

(1+sin(x))/(1-sin(x)) = ((1+sin(x))(1+sin(x)))/((1-sin(x))(1+sin(x)))

=(1+sin(x))^2/(1-sin^2(x))

=(1+sin(x))^2/cos^2(x)

=((1+sin(x))/cos(x))^2

=(1/cos(x)+sin(x)/cos(x))^2

=(sec(x)+tan(x))^2

Oct 13, 2016

(1+sinx)/(1-sinx)=(secx+tanx)^2

Explanation:

Let us start from right hand side.

(secx+tanx)^2

= (1/cosx+sinx/cosx)^2

= ((1+sinx)/cosx)^2

= (1+sinx)^2/cos^2x

= (1+sinx)^2/(1-sin^2x)

= (1+sinx)^2/(1+sinx)(1-sinx)

= (1+sinx)/(1-sinx)

Oct 13, 2016

LHS=(1+sinx)/(1-sinx)

=((1+sinx)(1+sinx))/((1-sinx)(1+sinx))

=(1+sinx)^2/(1-sin^2x)

=(1+sinx)^2/cos^2x

=((1+sinx)/cosx)^2

=(1/cosx+sinx/cosx)^2

=(secx+tanx)^2

Proved