Question #8e0d6

1 Answer
Oct 17, 2016

=16(cos^7(x/2)/7-cos^5(x/2)/5)+C=16(cos7(x2)7cos5(x2)5)+C

Explanation:

Here are the steps
intsin^3xcos(x/2)dxsin3xcos(x2)dx
So we start with the substitution u=x/2u=x2 so du=dx/2du=dx2
intsin^3xcos(x/2)dx=2intsin^3(2u)cosudusin3xcos(x2)dx=2sin3(2u)cosudu
=2int(2sinucosu)^3cosudu=2(2sinucosu)3cosudu
as sin2u=2sinucosusin2u=2sinucosu
=16intsin^2usinucos^4udu=16sin2usinucos4udu
=16int(1-cos^2u)cos^4usinudu=16(1cos2u)cos4usinudu
Now we use v=cosuv=cosu dv=-sinududv=sinudu
Integral =16int(1-v^2)v^4-dv=16(1v2)v4dv
=16int(v^6-v^4)dv=16(v6v4)dv
=16(v^7/7-v^5/5)=16(v77v55)
=16(cos^7u/7-cos^5u/5)=16(cos7u7cos5u5)
=16(cos^7(x/2)/7-cos^5(x/2)/5)+C=16(cos7(x2)7cos5(x2)5)+C