Question #849cc Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Annie Oct 18, 2016 1sinxcosx−sinxcosx=cotx Explanation: 1sinxcosx−sinxcosx=1cosx(1sinx−sinx) =1cosx(1sinx−sin2xsinx) =1cosxsinx(1−sin2x) But 1−sin2x=cos2x So the expression can be written as cos2xcosxsinx Cancelling gives cosxsinx=cotx Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 1803 views around the world You can reuse this answer Creative Commons License