Question #f676d
1 Answer
Oct 19, 2016
We will use the double angle identities
-
sin(2theta) = 2sin(theta)cos(theta)sin(2θ)=2sin(θ)cos(θ) -
cos(2theta) = 1-2sin^2(theta) = cos^2(theta)-sin^2(theta) = 2cos^2(theta)-1cos(2θ)=1−2sin2(θ)=cos2(θ)−sin2(θ)=2cos2(θ)−1
Proceeding...
= 1/2(2sin(2x)cos(2x))=12(2sin(2x)cos(2x))
=sin(2x)cos(2x)=sin(2x)cos(2x)
=(2sin(x)cos(x))(1-2sin^2(x))=(2sin(x)cos(x))(1−2sin2(x))
=2sin(x)cos(x)(1) - (2sin(x)cos(x))(2sin^2(x))=2sin(x)cos(x)(1)−(2sin(x)cos(x))(2sin2(x))
=2sin(x)cos(x) - 4sin^3(x)cos(x)=2sin(x)cos(x)−4sin3(x)cos(x)