Question #f676d

1 Answer
Oct 19, 2016

We will use the double angle identities

  • sin(2theta) = 2sin(theta)cos(theta)sin(2θ)=2sin(θ)cos(θ)

  • cos(2theta) = 1-2sin^2(theta) = cos^2(theta)-sin^2(theta) = 2cos^2(theta)-1cos(2θ)=12sin2(θ)=cos2(θ)sin2(θ)=2cos2(θ)1

Proceeding...

1/2sin(4x) = 1/2sin(2(2x))12sin(4x)=12sin(2(2x))

= 1/2(2sin(2x)cos(2x))=12(2sin(2x)cos(2x))

=sin(2x)cos(2x)=sin(2x)cos(2x)

=(2sin(x)cos(x))(1-2sin^2(x))=(2sin(x)cos(x))(12sin2(x))

=2sin(x)cos(x)(1) - (2sin(x)cos(x))(2sin^2(x))=2sin(x)cos(x)(1)(2sin(x)cos(x))(2sin2(x))

=2sin(x)cos(x) - 4sin^3(x)cos(x)=2sin(x)cos(x)4sin3(x)cos(x)