Question #1a1ed

1 Answer
Oct 25, 2016

x=sqrt(3)/3x=33

Explanation:

"arccot"(x) + 2arcsin(sqrt(3)/2) = piarccot(x)+2arcsin(32)=π

The inverse sine function arcsin(x)arcsin(x) is defined as the unique value in the interval [-pi/2,pi/2][π2,π2] such that sin(arcsin(x)) = xsin(arcsin(x))=x. On that interval, we have sin(pi/3) = sqrt(3)/2sin(π3)=32 as a well known angle. Thus arcsin(sqrt(3)/2) = pi/3arcsin(32)=π3

=> "arccot"(x) + (2pi)/3 = piarccot(x)+2π3=π

=> "arccot"(x) = pi/3arccot(x)=π3

=> cot("arccot"(x)) = cot((pi)/3)cot(arccot(x))=cot(π3)

=> x = cot((pi)/3)x=cot(π3)

=cos((pi)/3)/sin((pi)/3)=cos(π3)sin(π3)

=(1/2)/(sqrt(3)/2)=1232

=1/sqrt(3)=13

=sqrt(3)/3=33