I'll assume y=.13x^2+20.93x+838.43y=.13x2+20.93x+838.43 is meant.
Let's use the quadratic formula:
x = (-b \pm sqrt(b^2-4ac)) / (2a) x=−b±√b2−4ac2a
where we have a=.13, b=20.93, c=838.43a=.13,b=20.93,c=838.43
x = (-20.93 \pm sqrt((20.93)^2-4(.13)(838.43))) / (2(.13)) x=−20.93±√(20.93)2−4(.13)(838.43)2(.13)
x = (-20.93 \pm sqrt(438.0649-435.9836)) / .26 x=−20.93±√438.0649−435.9836.26
x = (-20.93 \pm sqrt(2.0813)) / .26 x=−20.93±√2.0813.26
x=(-20.93 + sqrt(2.0813)) / .26 ~=-74.95x=−20.93+√2.0813.26≅−74.95
x=(-20.93 - sqrt(2.0813)) / .26 ~=-86.05x=−20.93−√2.0813.26≅−86.05
The graph looks like this:
graph{.13x^2+20.93x+838.43[-90,-70,-5,5]}