What is the derivative of y = secx/tanxy=secxtanx?

1 Answer
Oct 28, 2016

y' = -cotxcscx

Explanation:

Let's rewrite the function y = secx/tanx in sine and cosine.

y = secx/tanx

Apply the identities sectheta = 1/costheta and tantheta = sintheta/costheta.

y = (1/cosx)/(sinx/cosx)

y = 1/cosx xx cosx/sinx

y = 1/sinx

We can now use the quotient rule to differentiate.

y' = (0 xx sinx - cosx xx 1)/(sinx)^2

y' = -cosx/sin^2x

y' = -cosx/sinx xx 1/sinx

Apply the identities cosx/sinx = cotx and 1/sinx = cscx.

y' = -cotxcscx

Hopefully this helps!