What is the solution to the Differential Equation dy/dx = sin(x+y) + cos(x+y)dydx=sin(x+y)+cos(x+y)?

1 Answer
Oct 30, 2016

-log(abs(2*sin(y)/(cos(y)+1)-2^(3/2)-2)/abs(2*sin(y)/(cos(y)+1)+2^(3/2)-2))/sqrt(2) = -cosx + sinx + Clog2sin(y)cos(y)+123222sin(y)cos(y)+1+23222=cosx+sinx+C

Explanation:

dy/dx = sin(x+y) + cos(x+y) dydx=sin(x+y)+cos(x+y)

In it's present form this is not separable, but using the sine and cosine sum formula we have:

dy/dx = sinxcosy+cosxsiny + cosxcosy+sinxsiny dydx=sinxcosy+cosxsiny+cosxcosy+sinxsiny
:. dy/dx = sinxcosy+sinxsiny+cosxsiny + cosxcosy
:. dy/dx = sinx(cosy+siny)+cosx(siny + cosy)
:. dy/dx = sinx(siny+cosy)+cosx(siny + cosy)
:. dy/dx = (siny + cosy)(sinx + cosx)

This is now separable (phew! But you do need to be good with trigonometry!), So "separating the variables" gives us:

int 1/((siny + cosy))dy = int (sinx + cosx) dx

The LHS integral is a real pig, This question is more about the separation process than horrific integration, so I will just quote the result which is:

int 1/((siny + cosy))dy = -log(abs(2*sin(y)/(cos(y)+1)-2^(3/2)-2)/abs(2*sin(y)/(cos(y)+1)+2^(3/2)-2))/sqrt(2)

So the solution is:
-log(abs(2*sin(y)/(cos(y)+1)-2^(3/2)-2)/abs(2*sin(y)/(cos(y)+1)+2^(3/2)-2))/sqrt(2) = -cosx + sinx + C