Question #b42d1

1 Answer
Oct 31, 2016

Ans : x=0,+1 and -1

Explanation:

Solve
sin^-1((ax)/c) + sin^-1( (bx)/c) = sin^-1( x )where a²+b²=c² and c≠0

sin^-1((ax)/c) + sin^-1( (bx)/c) = sin^-1( x )

=>sin^-1{((ax)/c)sqrt(1-( (bx)/c)^2)+( (bx)/c)sqrt(1-( (ax)/c)^2)} = sin^-1( x )

=>{((ax)/c)sqrt(1-( (bx)/c)^2)+( (bx)/c)sqrt(1-( (ax)/c)^2)}^2 = x^2

=>((ax)/c)^2(1-( (bx)/c)^2)+( (bx)/c)^2(1-( (ax)/c)^2)+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2

=>((a^2+b^2))/c^2x^2-(2a^2b^2x^4)/c^4+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2

=>c^2/c^2x^2-(2a^2b^2x^4)/c^4+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2

=>2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = (2a^2b^2x^4)/c^4

=>x^2sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2) - (abx^4)/c^2=0

=>x^2[sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2) - (abx^2)/c^2]=0

so x^2=0=>x=0

And

=>sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2)= (abx^2)/c^2

=>1-((a^2+b^2))/c^2x^2+cancel((a^2b^2x^4)/c^2)= cancel((a^2b^2x^4)/c^2

=>x^2-1=0

=>x=+-1

Ans : x=0,+1 and -1