Question #e66cd

1 Answer
Oct 31, 2016

sec^2x + 2tanx - 3= 0sec2x+2tanx3=0

Recall the pythagorean identity sec^2theta = 1 + tan^2thetasec2θ=1+tan2θ.

1 + tan^2x +2tanx - 3 = 01+tan2x+2tanx3=0

tan^2x + 2tanx - 2 = 0tan2x+2tanx2=0

Let t = tanxt=tanx

t^2 + 2t - 2 = 0t2+2t2=0

t = (-2 +- sqrt(2^2 - 4 xx 1 xx -2))/(2 xx 1)t=2±224×1×22×1

t = (-2 +-sqrt(12))/2t=2±122

t = (-2 +- 2sqrt(3))/2t=2±232

t = -1 +- sqrt(3)t=1±3

tanx = -1 +- sqrt(3)tanx=1±3

x = pin - arctan(sqrt(3)-1) and pin - arctan(1 + sqrt(3))x=πnarctan(31)andπnarctan(1+3)

Hopefully this helps!