sec^2x + 2tanx - 3= 0sec2x+2tanx−3=0
Recall the pythagorean identity sec^2theta = 1 + tan^2thetasec2θ=1+tan2θ.
1 + tan^2x +2tanx - 3 = 01+tan2x+2tanx−3=0
tan^2x + 2tanx - 2 = 0tan2x+2tanx−2=0
Let t = tanxt=tanx
t^2 + 2t - 2 = 0t2+2t−2=0
t = (-2 +- sqrt(2^2 - 4 xx 1 xx -2))/(2 xx 1)t=−2±√22−4×1×−22×1
t = (-2 +-sqrt(12))/2t=−2±√122
t = (-2 +- 2sqrt(3))/2t=−2±2√32
t = -1 +- sqrt(3)t=−1±√3
tanx = -1 +- sqrt(3)tanx=−1±√3
x = pin - arctan(sqrt(3)-1) and pin - arctan(1 + sqrt(3))x=πn−arctan(√3−1)andπn−arctan(1+√3)
Hopefully this helps!