Question #fcd5a

1 Answer
Nov 1, 2016

y=-5/3e^(-8x)+14/3e^(2x)y=53e8x+143e2x

Explanation:

This is a homogeneous linear differential equation with constant coefficients. The general solution to this kind of equation has the structure

y(x) = e^(lambda x)y(x)=eλx. Substituting

(lambda^2+6lambda-16)e^(lambda x) = 0(λ2+6λ16)eλx=0. Here e^(lambda x) ne 0eλx0 so the equation is satisfied for lambdaλ's satisfying

lambda^2+6lambda-16=0λ2+6λ16=0 or lambda_1=-8, lambda_2=2λ1=8,λ2=2
so the solution is

y = c_1 e^(-8x)+c_2e^(2x)y=c1e8x+c2e2x The constants c_1,c_2c1,c2 are choosed according to the initial conditions. So

y(0)=c_1+c_2=3y(0)=c1+c2=3 and
y'(0)=-8c_1+2c_2=-4 and finally, solving for c_1,c_2

c_1=-5/3,c_2=14/3 Finally

y=-5/3e^(-8x)+14/3e^(2x)