How do you solve cos^2x = root(3)(cosx)cos2x=3cosx on [0, 2pi)[0,2π)?

1 Answer
Nov 5, 2016

cos^2x = root(3)(cosx)cos2x=3cosx

(cos^2x)^3 = (root(3)(cosx))^3(cos2x)3=(3cosx)3

cos^6x = cosxcos6x=cosx

cos^6x - cosx= 0cos6xcosx=0

cos^5x(cosx- 1 ) = 0cos5x(cosx1)=0

cos^5x = 0 and cosx = 1cos5x=0andcosx=1

x = pi/2, (3pi)/2, 0x=π2,3π2,0

Hopefully this helps!