Find the solution of 2sqrt3sin2theta=sqrt3, if 0<=theta<2pi?

1 Answer

theta=pi/12,(5pi)/12,(13pi)/12,(17pi)/12

Explanation:

2sqrt3sin2theta=sqrt3

rArrsin2theta=sqrt3/(2sqrt3)=1/2

sin2theta>0totheta" in first/second quadrants"

rArr2theta=pi/6" or "(5pi)/6" or "(13pi)/6" or "(17pi)/6

rArrtheta=pi/12" or "(5pi)/12" or "(13pi)/12" or "(17pi)/12to[0,2pi]