How do you determine the derivative of y = ((cosx)/(1 -sinx))^2?

1 Answer
Dec 15, 2016

y' = (2cosx)/(1 -sinx)^2

Explanation:

We have:

y= ((cosx)/(1 - sinx))^2

y = (cos^2x)/(1 - 2sinx + sin^2x)

y = (1 - sin^2x)/(1 - sinx)^2

y = ((1 + sinx)(1 - sinx))/((1 - sinx)(1 - sinx))

y = (1 +sinx)/(1 -sinx)

By the quotient rule:

y'= (cosx(1 -sinx) - (-cosx(1 +sinx)))/(1 -sinx)^2

y' = (cosx- cosxsinx + cosx + cosxsinx)/(1 - sinx)^2

y' = (2cosx)/(1 -sinx)^2

Hopefully this helps!