Show that int_0^h int_0^x sqrt(x^2+y^2) dy dx = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) ∫h0∫x0√x2+y2dydx=h36(√2+ln(√2+1))?
1 Answer
Explanation:
We want to evaluate:
so here
in the y-direction between
y=0y=0 andy=xy=x
in the x-direction betweenx=0x=0 andx=hx=h (a constant)
This represents a right angled triangle in the first quarter.
If we convert to Polar Coordinates then the region
an angle from
theta=0θ=0 totheta=pi/4θ=π4
a ray fromr=0r=0 tor=hsec thetar=hsecθ (ascos theta = "adj"/"hyp"=h/rcosθ=adjhyp=hr )
And as we convert to Polar coordinates we get:
x=rcos thetax=rcosθ
y=rsin thetay=rsinθ
dA = dy dy = r dr d thetadA=dydy=rdrdθ
So then the integrand
Hence,
NOTE
As this is an exercise in performing the double integral, I have used (without proof) the results:
int sec^3x dx = 1/2secx tanx + 1/2ln|secx + tanx|∫sec3xdx=12secxtanx+12ln|secx+tanx|
And for clarity
sec(pi/4)=sqrt(2), tan(pi/4)=1, sec 0=1, tan 0 =0 sec(π4)=√2,tan(π4)=1,sec0=1,tan0=0