Show that int_0^h int_0^x sqrt(x^2+y^2) dy dx = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) h0x0x2+y2dydx=h36(2+ln(2+1))?

1 Answer
Dec 19, 2016

int_0^h int_0^x sqrt(x^2+y^2) dy dx = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) h0x0x2+y2dydx=h36(2+ln(2+1)) QED

Explanation:

We want to evaluate:
int int _R sqrt(x^2+y^2) dA = int_0^h int_0^x sqrt(x^2+y^2) dy dx Rx2+y2dA=h0x0x2+y2dydx

so here RR is the region:

in the y-direction between y=0y=0 and y=xy=x
in the x-direction between x=0x=0 and x=hx=h (a constant)

This represents a right angled triangle in the first quarter.

enter image source here

If we convert to Polar Coordinates then the region RR is:

an angle from theta=0θ=0 to theta=pi/4θ=π4
a ray from r=0r=0 to r=hsec thetar=hsecθ (as cos theta = "adj"/"hyp"=h/rcosθ=adjhyp=hr)

And as we convert to Polar coordinates we get:

x=rcos thetax=rcosθ
y=rsin thetay=rsinθ
dA = dy dy = r dr d thetadA=dydy=rdrdθ

So then the integrand sqrt(x^2+y^2)=sqrt(r^2)=rx2+y2=r2=r

Hence,
int_0^h int_0^x sqrt(x^2+y^2) dy dx = int_0^(pi/4) int_0^(hsec theta) r r dr d theta h0x0x2+y2dydx=π40hsecθ0rrdrdθ
" " = int_0^(pi/4) int_0^(hsec theta) r^2 dr d theta =π40hsecθ0r2drdθ
" " = int_0^(pi/4) [r^3/3 ]_0^(hsec theta) d theta =π40[r33]hsecθ0dθ
" " = int_0^(pi/4) ((h sec theta)^3/3 -0) d theta =π40((hsecθ)330)dθ
" " = h^3/3 int_0^(pi/4) (sec^3 theta) d theta =h33π40(sec3θ)dθ
" " = h^3/3 [1/2sec theta tan theta + 1/2ln|sec theta + tan theta |]_0^(pi/4) =h33[12secθtanθ+12ln|secθ+tanθ|]π40
" " = h^3/3 {(1/2sec (pi/4) tan (pi/4) + 1/2ln|sec (pi/4) + tan (pi/4) |) - (1/2sec 0 tan 0 + 1/2ln|sec 0 + tan 0 |) } =h33{(12sec(π4)tan(π4)+12lnsec(π4)+tan(π4))(12sec0tan0+12ln|sec0+tan0|)}
" " = h^3/3 {(1/2*sqrt(2) *1 + 1/2ln| sqrt(2) + 1 |) - (1/2*1*0 + 1/2ln|1 + 0 |) } =h33{(1221+12ln2+1)(1210+12ln|1+0|)}
" " = h^3/3 (1/2*sqrt(2) + 1/2ln( sqrt(2) + 1) ) =h33(122+12ln(2+1))
" " = h^3/6 (sqrt(2) + ln( sqrt(2) + 1) ) =h36(2+ln(2+1)) QED

NOTE
As this is an exercise in performing the double integral, I have used (without proof) the results:

int sec^3x dx = 1/2secx tanx + 1/2ln|secx + tanx|sec3xdx=12secxtanx+12ln|secx+tanx|

And for clarity

sec(pi/4)=sqrt(2), tan(pi/4)=1, sec 0=1, tan 0 =0 sec(π4)=2,tan(π4)=1,sec0=1,tan0=0