Question #50154

1 Answer
Nov 10, 2016

Use a combination of the product and quotient rules.

Let g(x) = xsinx.

g'(x) = 1 xx sinx + x xx cosx = sinx + xcosx

Let the entire function be f(x) = (xsinx)/(1 + cosx).

f'(x) = ((sinx + xcosx)(1 + cosx) - (-sinx xx xsinx))/(1 + cosx)^2

f'(x) = (sinx + xcosx + sinxcosx + xcos^2x + xsin^2x)/(1 + cosx)^2

f'(x) = (sinx + xcosx + sinxcosx + x)/(1 + cosx)^2

f'(x) = (sinx(1 + cosx) + x(1 + cosx))/(1 + cosx)^2

f'(x) = ((sinx + x)(1 + cosx))/(1 + cosx)^2

f'(x) = ((sinx + x)(1 + cosx))/((1 + cosx)(1 + cosx))

f'(x) = (sinx + x)/(1 + cosx)

Hopefully this helps!