Question #2e6ef

1 Answer
Feb 18, 2017

y = x-2("arccot"((x+2+C)/(x+C))+k pi), k = 0,1,2,cdots

Explanation:

Making z = x-y we have (dz)/(dx)=1-(dy)/(dx) so

(dy)/(dx)=sin(x-y)-> (dz)/(dx)=1-sin(z) This differential equation is separable so

(dz)/(1-sin(z))=dx integrating

(2sin(z/2))/(cos(z/2)-sin(z/2))=x + C or

2/(cot(z/2)-1)=x+C or

2/(cot((x-y)/2)-1)=x+C

Finally

y = x-2("arccot"((x+2+C)/(x+C))+k pi)