sin2x=sin(x+pi/3)sin2x=sin(x+π3)
=>sin2x-sin(x+pi/3)=0⇒sin2x−sin(x+π3)=0
=>2cos(3/2x+pi/6)sin(x/2-pi/6)=0⇒2cos(32x+π6)sin(x2−π6)=0
When cos(3/2x+pi/6)=0cos(32x+π6)=0
then 3/2x+pi/6=(2n+1)pi/2" where " n in ZZ
=>3/2x=npi+pi/2-pi/6
=>x=(2npi)/3+(2pi)/9=(2pi)/9(3n+1)
when sin(x/2-pi/6)=0
then (x/2-pi/6)=npi" where "n in ZZ
=>x=2npi+pi/3