How do you factor 1−x8 ?
2 Answers
Nov 15, 2016
Explanation:
Remember
=
=
Nov 15, 2016
Explanation:
The difference of squares identity can be written:
a2−b2=(a−b)(a+b)
Note also that:
(a2−kab+b2)(a2+kab+b2)=a4+(2−k2)a2b2+b4
In particular, putting
(a2−√2ab+b2)(a2+√2ab+b2)=a4+b4
So we find:
1−x8=12−(x4)2
1−x8=(1−x4)(1+x4)
1−x8=(12−(x2)2)(14+x4)
1−x8=(1−x2)(1+x2)(12−√2x+x2)(12+√2x+x2)
1−x8=(12−x2)(1+x2)(1−√2x+x2)(1+√2x+x2)
1−x8=(1−x)(1+x)(1+x2)(1−√2x+x2)(1+√2x+x2)
The remaining quadratic factors have no linear factors with Real coefficients.