How do you factor 1x8 ?

2 Answers
Nov 15, 2016

(1x)(1+x)(1+x2)(1+x4)

Explanation:

Remember (a2b2)=(ab)(a+b)
(1x8)=(1x4)(1+x4)
=(1x2)(1+x2)(1+x4)
=(1x)(1+x)(1+x2)(1+x4)

Nov 15, 2016

1x8=(1x)(1+x)(1+x2)(12x+x2)(1+2x+x2)

Explanation:

The difference of squares identity can be written:

a2b2=(ab)(a+b)

Note also that:

(a2kab+b2)(a2+kab+b2)=a4+(2k2)a2b2+b4

In particular, putting k=2 we find:

(a22ab+b2)(a2+2ab+b2)=a4+b4

So we find:

1x8=12(x4)2

1x8=(1x4)(1+x4)

1x8=(12(x2)2)(14+x4)

1x8=(1x2)(1+x2)(122x+x2)(12+2x+x2)

1x8=(12x2)(1+x2)(12x+x2)(1+2x+x2)

1x8=(1x)(1+x)(1+x2)(12x+x2)(1+2x+x2)

The remaining quadratic factors have no linear factors with Real coefficients.