Prove that? lim_(h->0)(sec(x+h) - sec x)/h = sec x*tan x
1 Answer
See belw
Explanation:
We want to prove that
lim_(h->0)(sec(x+h) - sec x)/h = sec x*tan x
Hopefully, you can identify this as the limit used in a derivative, and so this is the same as procing that:
d/dx sec(x) = sec x*tan x
Let
L = lim_(h->0)(1/(cos(x+h)) - 1/(cos x))/h
:. L = lim_(h->0) (cos x - cos(x+h))/(hcos(x+h)cos x)
:. L = lim_(h->0)(cos x - (cos xcos h - sin xsin h))/(hcos(x+h)cos x)
:. L = lim_(h->0)(cos x - cos xcos h + sin xsin h)/(hcos(x+h)cos x)
:. L = lim_(h->0) (cos x(1 - cos h)+sinxsinh)/(hcos(x+h)cos x)
:. L = lim_(h->0) (cos x(1 - cos h))/(hcos(x+h)cos x) + (sin xsinh)/(hcos(x+h)cos x)
:. L = lim_(h->0) (1 - cos h)/(hcos(x+h)) + (sin x/cos x)lim_(h->0) (sin h)/(hcos(x+h)
As
Also,
:. L = lim_(h->0) (1 - cos h)/(hcos(x+h)) + (sin x/cos x)lim_(h->0) (sin h)/(hcos(x+h)
:. L = 0+ (sin x/cos x)1/cosx
:. L = tanxsecx QED