Question #eebbd

1 Answer
Jan 9, 2017

y = e^(1/2(x^2-1)sin^2(x^2))y=e12(x21)sin2(x2)

Explanation:

This differential equation is separable. So

(dy)/y=x^3cos(x^2)dxdyy=x3cos(x2)dx. Integrating we have

log y=1/2(cos(x^2) + x^2 sin(x^2))+Clogy=12(cos(x2)+x2sin(x2))+C or

y = C_1e^(1/2(cos(x^2) + x^2 sin(x^2)))y=C1e12(cos(x2)+x2sin(x2))

The initial condition dictates

1 = C_1e^(1/2)1=C1e12 so the final solution is

y = e^(1/2(x^2-1)sin^2(x^2))y=e12(x21)sin2(x2)