If sintheta + 4csctheta + 5 = 0sinθ+4cscθ+5=0, what is the value of thetaθ, on [0, 2pi)[0,2π)?

1 Answer
Nov 24, 2016

By the reciprocal identity cscbeta = 1/sinbetacscβ=1sinβ:

sintheta + 4/sintheta + 5 = 0sinθ+4sinθ+5=0

Put on a common denominator.

(sin^2theta + 4 + 5sintheta)/sintheta = 0sin2θ+4+5sinθsinθ=0

sin^2theta + 5sintheta + 4 = 0sin2θ+5sinθ+4=0

Let t = sinthetat=sinθ.

t^2 + 5t + 4 = 0t2+5t+4=0

(t + 4)(t + 1) = 0(t+4)(t+1)=0

t = -4 and -1t=4and1

sintheta = -4 and sin theta = -1sinθ=4andsinθ=1

However, since the domain of y = arcsinxy=arcsinx are -1 ≤ x ≤ 11x1, there is no real solution to sintheta = -4sinθ=4.

Hence, the only solution is 270˚ ( by the unit circle).

Hopefully this helps!