What is the slope of #xy^3+xy=10# at the point #(5,1)#?

2 Answers
Jul 13, 2017

Slope #=-1/10# at #(5, 1)#

Explanation:

#xy^3+xy=10#

Applying implicit differentiation:

#x*3y^2dy/dx+y^3*1 +xdy/dx+y*1 =0#

#(3xy^2+x)dy/dx = -(y^3+y)#

#:. dy/dx = (-(y^3+y))/(3xy^2+x)#

#dy/dx# represents the slope of the tangent to the curve at any point #(x_1, y_1)# on the curve.

Slope of the tangent #(m)# at #(5, 1)#

#= (-(1+1))/(3*5*1 +5) = (-2)/(15+5) = -2/20#

#=-1/10#

Mar 30, 2018

#"slope "=-1/10#

Explanation:

#"differentiate "color(blue)"implicitly with respect to x"#

#"differentiate "xy^3" and "xy" using the "color(blue)"product rule"#

#(x.3y^2dy/dx+y^3 .1)+(xdy/dx+y.1)=0#

#rArr3xy^2dy/dx+y^3+xdy/dx+y=0#

#rArrdy/dx(3xy^2+x)=-y^3-y#

#rArrdy/dx=-(y^3+y)/(3xy^2+x)#

#"at "(5,1)#

#dy/dx=-(1+1)/(15+5)=-2/20=-1/10larrcolor(red)"slope"#