Question #f3a89

1 Answer
Nov 24, 2016

Given tanx=4/5 and pi<x<2pi

So pi/2 < x/2 < pi=>x/2 in" 2nd quadrant"

Hence tan(x/2)-> -ve

Now given formula is

tan2x=(2tanx)/(1-tan^2x)

Substituting x" for "x/2 we get

tanx=(2tan(x/2))/(1-tan^2(x/2))

=>4/5=(2tan(x/2))/(1-tan^2(x/2))

Let tan(x/2)=y

=>cancel4^2/5=(cancel2y)/(1-y^2)

=>5y=2-2y^2

=>2y^2+5y-2=0

=>y=(-5-sqrt(5^2-4*2*(-2)))/(2*2)

=>y=(-5-sqrt41)/4

=>tan(x/2)=(-5-sqrt41)/4

[since tan(x/2) to be negative as explained above +ve root of y is neglected]