How do you show that #sec(2x) + tan(2x) + 1 = 2/(1 - tanx)#?

1 Answer
Nov 26, 2016

First of all, #sectheta = 1/costheta# and #tantheta = sintheta/costheta#.

#1/(cos2x) +( sin2x)/(cos2x) + 1 = 2/(1 - sinx/cosx)#

#(sin2x + 1)/(cos2x) + 1 = 2/((cosx - sinx)/cosx)#

#(sin2x + 1)/(cos2x) + (cos2x)/(cos2x) = 2/((cosx - sinx)/cosx)#

We now establish the double angle identities. I won't go into the proofs for these, but I would just like to emphasize that these formulas are very important.

#sin2theta = 2sinthetacostheta#
#cos2theta = 1 - 2sin^2theta = 2cos^2theta - 1 = cos^2theta - sin^2theta#

#(2sinxcosx + 1 + cos2x)/(cos2x) = (2cosx)/(cosx - sinx)#

#(2sinxcosx + 2cos^2x - 1 + 1)/(cos^2x - sin^2x) = (2cosx)/(cosx- sinx)#

Factor:

#(2cosx(sinx + cosx))/((cosx + sinx)(cosx - sinx)) = (2cosx)/(cosx - sinx)#

#(2cosx)/(cosx + sinx) = (2cosx)/(cosx - sinx)#

Identity proved!

Hopefully this helps!