Prove that (tanx-cotx)/(tanx+cotx)=sin^2x-cos^2x?

1 Answer
Nov 26, 2016

Please see below.

Explanation:

(tanx-cotx)/(tanx+cotx)

= (sinx/cosx-cosx/sinx)/(sinx/cosx+cosx/sinx) - (converting tan ad cot ratios into sin and cos ratios)

= ((sin^2x-cos^2x)/(sinxcosx))/((sin^2x+cos^2x)/(sinxcosx)) - (adding as in fractions)

= (sin^2x-cos^2x)/(sinxcosx)xx(sinxcosx)/((sin^2x+cos^2x)

= (sin^2x-cos^2x)/cancel(sinxcosx)xxcancel(sinxcosx)/1 - (as sin^2x+cos^2x=1 and cancelling like terms in numerator and denominator)

= sin^2x-cos^2x