Question #5cf65

1 Answer
Nov 27, 2016

Currently, as is, the identity is false. If we change sinx - cosx in the denominator on the left to sinx + cosx, it will be true though (thanks to Mrs. R. for pointing this out).

We know that tantheta = sintheta/costheta, cottheta = 1/tantheta = 1/(sintheta/costheta) = costheta/sintheta, sectheta = 1/costheta and csctheta = 1/sintheta. So:

(cosx/sinx - sinx/cosx)/(sinx+ cosx) = 1/sinx - 1/cosx

((cos^2x - sin^2x)/(sinxcosx))/(sinx + cosx) = (cosx - sinx)/(cosxsinx)

((cosx + sinx)(cosx - sinx))/((sinxcosx)(cosx + sinx)) =(cosx - sinx)/(cosxsinx)

(cosx - sinx)/(sinxcosx) = (cosx - sinx)/(cosxsinx)

LHS = RHS

Identity proved!

Hopefully this helps!