Verify? (cotx-tanx)/cosxsinx=csc^2x-sec^2x

1 Answer

See below:

Explanation:

Let's start with the original:

(cotx-tanx)/cosxsinx=csc^2x-sec^2x

(sinx/cosx)cotx-(sinx/cosx)tanx=csc^2x-sec^2x

(sinx/cosx)(cosx/sinx)-(sinx/cosx)(sinx/cosx)=csc^2x-sec^2x

1-(sin^2x/cos^2x)=csc^2x-sec^2x

1-tan^2x=csc^2x-sec^2x

color(red)("recall the identity" tan^2x=sec^2x-1

1-(sec^2x-1)=csc^2x-sec^2x

1-sec^2x+1=csc^2x-sec^2x

2-sec^2x!=csc^2x-sec^2x

So as written the identity doesn't work. I suspect that what was meant was for the left hand sinx term to be in the denominator. Let's try that:

(cotx-tanx)/(cosxsinx)=csc^2x-sec^2x

cotx/(cosxsinx)-tanx/(cosxsinx)=csc^2x-sec^2x

(cosx/sinx)/(cosxsinx)-(sinx/cosx)/(cosxsinx)=csc^2x-sec^2x

cosx/(sinxcosxsinx)-sinx/(cosxcosxsinx)=csc^2x-sec^2x

cancelcosx/(sinxcancelcosxsinx)-cancelsinx/(cosxcosxcancelsinx)=csc^2x-sec^2x

1/(sin^2x)-1/(cos^2x)=csc^2x-sec^2x

csc^2x-sec^2x=csc^2x-sec^2x