Let's start with the original:
(cotx-tanx)/cosxsinx=csc^2x-sec^2x
(sinx/cosx)cotx-(sinx/cosx)tanx=csc^2x-sec^2x
(sinx/cosx)(cosx/sinx)-(sinx/cosx)(sinx/cosx)=csc^2x-sec^2x
1-(sin^2x/cos^2x)=csc^2x-sec^2x
1-tan^2x=csc^2x-sec^2x
color(red)("recall the identity" tan^2x=sec^2x-1
1-(sec^2x-1)=csc^2x-sec^2x
1-sec^2x+1=csc^2x-sec^2x
2-sec^2x!=csc^2x-sec^2x
So as written the identity doesn't work. I suspect that what was meant was for the left hand sinx term to be in the denominator. Let's try that:
(cotx-tanx)/(cosxsinx)=csc^2x-sec^2x
cotx/(cosxsinx)-tanx/(cosxsinx)=csc^2x-sec^2x
(cosx/sinx)/(cosxsinx)-(sinx/cosx)/(cosxsinx)=csc^2x-sec^2x
cosx/(sinxcosxsinx)-sinx/(cosxcosxsinx)=csc^2x-sec^2x
cancelcosx/(sinxcancelcosxsinx)-cancelsinx/(cosxcosxcancelsinx)=csc^2x-sec^2x
1/(sin^2x)-1/(cos^2x)=csc^2x-sec^2x
csc^2x-sec^2x=csc^2x-sec^2x