Differentiate secx using the definition of differential?

1 Answer
Jan 26, 2017

d/(dx)secx=secxtanx

Explanation:

For a function f(x), its differential (df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

Hence for secx, d/(dx)secx=Lt_(h->0)(sec(x+h)-secx)/h

= Lt_(h->0)(1/cos(x+h)-1/cosx)/h

= Lt_(h->0)(cosx-cos(x+h))/(hcos(x+h)cosx)

= Lt_(h->0)(2sin((x+h+x)/2)sin((x+h-x)/2))/(hcos(x+h)cosx)

= Lt_(h->0)(sin(x+h/2)sin(h/2))/(h/2cos(x+h)cosx)

= Lt_(h->0)sin(x+h/2)/(cos(x+h)cosx)xxLt_(h->0)(sin(h/2))/(h/2)xx

= sinx/(cosxcosx) xx1

= 1/cosx xxsinx/cosx

= secxtanx