Question #59b21

1 Answer
Nov 29, 2016

2xe^x-2=-2+2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ... x in RR

Explanation:

Let y = 2xe^x-2

We could form the TS from first principles, but it is easier to do so from the known TS for e^x

y=2x{e^x}-2
:. y=2x{1+x+x^2/(2!)+x^3/(3!)+x^4/(4!) + ...}-2
:. y={2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ...}-2
:. y=-2+2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ...

Incidentally the series e^x is valid for all x in RR, and hence so is the above series.


If you meant x-2 as the exponent then let y = 2xe^(x-2)

y=2x(e^xe^-2) =2/e^2 xe^x
:. y=2/e^2x{1+x+x^2/(2!)+x^3/(3!)+x^4/(4!) + ...}
:. y=2/e^2{x+x^2+x^3/(2!)+x^4/(3!)+x^5/(4!) + ...}
:. y=2/e^2x+2/e^2x^2+2/e^2x^3/(2!)+2/e^2x^4/(3!)+2/e^2x^5/(4!) + ...