How do you show that (sec2x+csc2x)(sec2xcsc2x)=tan2xcot2x?

1 Answer
Dec 18, 2016

The identity is false.

Explanation:

(sec2x+csc2x)(sec2xcsc2x)=tan2xcot2x

(1cos2x+1sin2x)(1cos2x1sin2x)=sin2xcos2xcos2xsin2x

(sin2x+cos2xcos2xsin2x)(sin2xcos2xcos2xsin2x)=sin2xcos2xcos2xsin2x

sin2xcos2xcos4xsin4x=sin4xcos4xsin2xcos2x

sin2xcos2xcos4xsin4x=((sin2x+cos2x)sin2xcos2xsin2xcos2x

sin2xcos2xcos4xsin4x=sin2xcos2xsin2xcos2x

As you can see, the two sides are unequal, so the identity is false.

Hopefully this helps!