Find the derivative using first principles? : e^sinx
2 Answers
Explanation:
The definition of the derivative of
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So Let
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
" " = lim_(h rarr 0) ( e^sin(x+h)-e^sinx )/h
" " = lim_(h rarr 0) ( e^sinx ( e^(sin(x+h)-sinx) - 1 ) ) / h
" "= e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h
" " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h * (sin(x+h)-sinx)/(sin(x+h)-sinx)
" " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx) * (sin(x+h)-sinx)/h
" " = e^sinx * L_1 * L_2
Where:
L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx)
L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h
Let us examine the first limit,
Let
L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx)
\ \ \ \ = lim_(alpha rarr 0) ( e^alpha - 1 ) / alpha
Now
L_1 = 1
Next we examine the second limit,
sin A - sin B = 2 cos((A + B)/2) sin ((A - B)/2)
And we get:
L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h
\ \ \ \ = lim_(h rarr 0) (2cos((x+h+x)/2) sin ((x+h-x)/2))/h
\ \ \ \ = lim_(h rarr 0) (2cos((2x+h)/2) sin (h/2))/h
\ \ \ \ = lim_(h rarr 0) (cos(x+h/2) sin (h/2))/(h/2)
\ \ \ \ = lim_(h rarr 0) cos(x+h/2) * lim_(h rarr 0) (sin (h/2))/(h/2)
Let
L_2 = lim_(h rarr 0) cos(x+h/2) * lim_(beta rarr 0) (sin (beta))/(beta)
And
L_2 = lim_(h rarr 0) cos(x+h/2) * 1
\ \ \ \ = cos(x)
Combining our results for
f'(x)=e^sinx * L_1 * L_2
" "=e^sinx * 1 * cosx
" "=e^sinx cosx
This is hardly from first principles but it is interesting.....
Explanation:
Start with the definition
We can see that:
And so: