Find the derivative using first principles? : e^sinx

2 Answers

d/dx( e^sinx) = e^sinx cosx

Explanation:

The definition of the derivative of y=f(x) is

f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h

So Let f(x) = e^sinx then the derivative of y=f(x) is given by:

f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
" " = lim_(h rarr 0) ( e^sin(x+h)-e^sinx )/h
" " = lim_(h rarr 0) ( e^sinx ( e^(sin(x+h)-sinx) - 1 ) ) / h
" "= e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h

" " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h * (sin(x+h)-sinx)/(sin(x+h)-sinx)

" " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx) * (sin(x+h)-sinx)/h

" " = e^sinx * L_1 * L_2

Where:

L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx)

L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h

Let us examine the first limit, L_1.
Let alpha=(sin(x+h)-sinx) then alpha rarr 0 as h rarr 0 and so

L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx)
\ \ \ \ = lim_(alpha rarr 0) ( e^alpha - 1 ) / alpha

Now lim_(alpha rarr 0) ( e^alpha - 1 ) / alpha = 1 is a standard calculus limit and so

L_1 = 1

Next we examine the second limit, L_2, We can use the sum and product formula:

sin A - sin B = 2 cos((A + B)/2) sin ((A - B)/2)

And we get:

L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h
\ \ \ \ = lim_(h rarr 0) (2cos((x+h+x)/2) sin ((x+h-x)/2))/h
\ \ \ \ = lim_(h rarr 0) (2cos((2x+h)/2) sin (h/2))/h
\ \ \ \ = lim_(h rarr 0) (cos(x+h/2) sin (h/2))/(h/2)
\ \ \ \ = lim_(h rarr 0) cos(x+h/2) * lim_(h rarr 0) (sin (h/2))/(h/2)

Let beta = h/2 then beta rarr 0 as h rarr 0, so:

L_2 = lim_(h rarr 0) cos(x+h/2) * lim_(beta rarr 0) (sin (beta))/(beta)

And lim_(beta rarr 0) (sin (beta))/(beta) =1 is another standard calculus limit, giving us:

L_2 = lim_(h rarr 0) cos(x+h/2) * 1
\ \ \ \ = cos(x)

Combining our results for L_1 and L_2 with our earlier result gives us:

f'(x)=e^sinx * L_1 * L_2
" "=e^sinx * 1 * cosx
" "=e^sinx cosx

Feb 16, 2017

This is hardly from first principles but it is interesting.....

Explanation:

Start with the definition e^z = 1 + z + z^2/(2!) + z^3/(3!)...

We can see that:

e^(sin x) = 1 + sin x + 1/(2!) sin^2 x + 1/(3!) sin^3 x ...

And so:

d/dx( e^(sin x) )= 0 + cos x + 2/(2!) sin x cos x + 3/(3!) sin^2 x cos x + ...

= cos x( 1 + sin x + 1/(2!) sin^2 x + ...)

= cos x * e^(sin x)