What is the general solution to the equation sin(3x) - sinx = 1sin(3x)sinx=1?

1 Answer
Dec 4, 2016

Recall that sin(3x) = sin(2x+ x)sin(3x)=sin(2x+x).

We use the sum formula sin(A + B) = sinAcosB + sinBcosAsin(A+B)=sinAcosB+sinBcosA to expand sin(2x + x)sin(2x+x).

sin2xcosx + cos2xsinx - sinx = 1sin2xcosx+cos2xsinxsinx=1

2sinxcosx(cosx) +( 2cos^2x - 1)sinx - sinx = 12sinxcosx(cosx)+(2cos2x1)sinxsinx=1

2sinxcos^2x + 2cos^2xsinx - sinx - sinx = 12sinxcos2x+2cos2xsinxsinxsinx=1

4sinxcos^2x - 2sinx = 14sinxcos2x2sinx=1

2sinx(2cos^2x- 1) = 12sinx(2cos2x1)=1

2cos^2x - 1 = 1/(2sinx)2cos2x1=12sinx

2cos^2x = 1+ 1/(2sinx)2cos2x=1+12sinx

2(1 - sin^2x) = (2sinx + 1)/(2sinx)2(1sin2x)=2sinx+12sinx

2 (1 - sin^2x) = (2(sinx + 1/2))/(2sinx)2(1sin2x)=2(sinx+12)2sinx

2(1 - sin^2x) = (sinx + 1/2)/(sinx)2(1sin2x)=sinx+12sinx

(2 - 2sin^2x )sinx = sinx + 1/2(22sin2x)sinx=sinx+12

2sinx - 2sin^3x = sinx + 1/22sinx2sin3x=sinx+12

-2sin^3x + sinx - 1/2 = 02sin3x+sinx12=0

We let t= sinxt=sinx.

-2t^3 + t - 1/2 = 02t3+t12=0

Solve using a graphing calculator, to get t ~= -0.885t0.885.

sinx= -0.885sinx=0.885

x = pi + 2pin+ arcsin(0.885)x=π+2πn+arcsin(0.885) and 2pin - arcsin(0.885)2πnarcsin(0.885)

Hopefully this helps!