Recall that sin(3x) = sin(2x+ x)sin(3x)=sin(2x+x).
We use the sum formula sin(A + B) = sinAcosB + sinBcosAsin(A+B)=sinAcosB+sinBcosA to expand sin(2x + x)sin(2x+x).
sin2xcosx + cos2xsinx - sinx = 1sin2xcosx+cos2xsinx−sinx=1
2sinxcosx(cosx) +( 2cos^2x - 1)sinx - sinx = 12sinxcosx(cosx)+(2cos2x−1)sinx−sinx=1
2sinxcos^2x + 2cos^2xsinx - sinx - sinx = 12sinxcos2x+2cos2xsinx−sinx−sinx=1
4sinxcos^2x - 2sinx = 14sinxcos2x−2sinx=1
2sinx(2cos^2x- 1) = 12sinx(2cos2x−1)=1
2cos^2x - 1 = 1/(2sinx)2cos2x−1=12sinx
2cos^2x = 1+ 1/(2sinx)2cos2x=1+12sinx
2(1 - sin^2x) = (2sinx + 1)/(2sinx)2(1−sin2x)=2sinx+12sinx
2 (1 - sin^2x) = (2(sinx + 1/2))/(2sinx)2(1−sin2x)=2(sinx+12)2sinx
2(1 - sin^2x) = (sinx + 1/2)/(sinx)2(1−sin2x)=sinx+12sinx
(2 - 2sin^2x )sinx = sinx + 1/2(2−2sin2x)sinx=sinx+12
2sinx - 2sin^3x = sinx + 1/22sinx−2sin3x=sinx+12
-2sin^3x + sinx - 1/2 = 0−2sin3x+sinx−12=0
We let t= sinxt=sinx.
-2t^3 + t - 1/2 = 0−2t3+t−12=0
Solve using a graphing calculator, to get t ~= -0.885t≅−0.885.
sinx= -0.885sinx=−0.885
x = pi + 2pin+ arcsin(0.885)x=π+2πn+arcsin(0.885) and 2pin - arcsin(0.885)2πn−arcsin(0.885)
Hopefully this helps!