If cotx=5/12cotx=512
tanx=12/5tanx=125
cos^2x+sin^2x=1cos2x+sin2x=1
Dividing by cos^2xcos2x
1+tan^2x=sec^2x1+tan2x=sec2x
sec^2x=1+12^2/5^2=1+144/25=169/25sec2x=1+12252=1+14425=16925
secx=13/5secx=135
secx=1/cosxsecx=1cosx
cosx=5/13cosx=513
sinx=sqrt(1-cos^2x)=sqrt(1-25/169)sinx=√1−cos2x=√1−25169
=sqrt144/169=12/13=√144169=1213
cscx=1/sinx=13/12cscx=1sinx=1312
And finally,
sinx+cscx=12/13+13/12=2sinx+cscx=1213+1312=2