Question #ad27d

1 Answer
Dec 12, 2016

d = sqrt[2/3] - 1/sqrt[6] = 0.408248

Explanation:

L_a->(x+1=2t_1,y+1=3t_1,z+1=4t_1)
L_b->(x+1=3t_2,y=4t_2,z=5t_2)

or

L_a->p=p_a+t_1 vec v_a
L_b->p=p_b+t_2 vec v_b

with

p_a=(-1,-1,-1) and vec v_a=(2,3,4)
p_b=(-1,0,0) and vec v_b=(3,4,5)

calling now hat v_c = (vec v_a xx vec v_b)/norm(vec v_a xx vec v_b) and also making

Delta p = p_a+t_1 vec v_a-(p_b+t_2 vec v_b) = p_a-p_b+t_1 vec v_a-t_2 vec v_b

making the scalar product by hat v_c we have

<< Delta p, hat v_c >> = << p_a-p_b, hat v_c >> because << hat v_c, vec v_a >> = << hat v_c, vec v_b >> = 0 and finally

d = abs(<< Delta p, hat v_c >>) = abs(<< p_a-p_b, hat v_c >>)

In our case study we have

p_a-p_b = (0,1,1)

vec v_a xx vec v_b = (-1,2,-1) and

hat v_c = (-1/sqrt[6], sqrt[2/3], -1/sqrt[6]) and

d = sqrt[2/3] - 1/sqrt[6] = 0.408248