Question #c7b75

1 Answer
Dec 12, 2016

2sin^2theta+3cos^2theta2sin2θ+3cos2θ

=2sin^2theta+2cos^2theta+cos^2theta=2sin2θ+2cos2θ+cos2θ

=2(sin^2theta+cos^2theta)+cos^2theta=2(sin2θ+cos2θ)+cos2θ

=2*1+cos^2theta=21+cos2θ

The value of given expression will be minimum when cos^2thetacos2θ minimum which is =0=0. So the minimum value is =2=2