If u=sec2theta+tan2thetau=sec2θ+tan2θ, find (u-1)/(u+1)u1u+1?

3 Answers
Dec 13, 2016

Please see below.

Explanation:

We are given u=sec2theta+tan2thetau=sec2θ+tan2θ....(1)

and hence using componendo and dividendo

(u-1)/(u+1)=(sec2theta+tan2theta-1)/(sec2theta+tan2theta+1)u1u+1=sec2θ+tan2θ1sec2θ+tan2θ+1

multiplying numerator and denominator on RHS by cos2thetacos2θ, we get

(u-1)/(u+1)=(1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)u1u+1=1+sin2θcos2θ1+sin2θ+cos2θ

= (1+2sinthetacostheta-cos^2theta+sin^2theta)/(1+2sinthetacostheta+cos^2theta-sin^2theta)1+2sinθcosθcos2θ+sin2θ1+2sinθcosθ+cos2θsin2θ

=(sin^2theta+2sinthetacostheta+sin^2theta)/(cos^2theta+2sinthetacostheta+cos^2theta)=sin2θ+2sinθcosθ+sin2θcos2θ+2sinθcosθ+cos2θ

=(2sin^2theta+2sinthetacostheta)/(2cos^2theta+2sinthetacostheta)=2sin2θ+2sinθcosθ2cos2θ+2sinθcosθ

=(2sintheta(sintheta+costheta))/(2costheta(costheta+sintheta)=2sinθ(sinθ+cosθ)2cosθ(cosθ+sinθ)

= (2sintheta)/(2costheta)2sinθ2cosθ

= tanthetatanθ

= tt

Jun 19, 2018

tanthetatanθ.

Explanation:

Prerequisite : Componendo Dividendo (CD) :

CD : a/b=c/d iff (a-b)/(a+b)=(c-d)/(c+d)CD:ab=cdaba+b=cdc+d.

We have, u=sec2theta+tan2thetau=sec2θ+tan2θ,

=1/(cos2theta)+(sin2theta)/(cos2theta)=1cos2θ+sin2θcos2θ,

=(1+sin2theta)/(cos2theta)=1+sin2θcos2θ,

={(cos^2theta+sin^2theta)+2costhetasintheta}/(cos^2theta-sin^2theta)=(cos2θ+sin2θ)+2cosθsinθcos2θsin2θ,

=(costheta+sintheta)^cancel2/{cancel((costheta+sintheta))(costheta-sintheta)},

rArr u/1=(costheta+sintheta)/(costheta-sintheta).

"By CD, then, "(u-1)/(u+1),

={(costheta+sintheta)-(costheta-sintheta)}/{(costheta+sintheta)+(costheta-sintheta)},

=(2sintheta)/(2costheta),

rArr (u-1)/(u+1)=tantheta,

as Respected Shwetank Mauria has readily derived!

Jun 19, 2018

tantheta. Kindly go through Explanation.

Explanation:

Here is a Third Method to solve the Problem, if we use,

cos2theta=(1-t^2)/(1+t^2), and, tan2theta=(2t)/(1-t^2), t=tantheta.

Hence, u=sec2theta+tan2theta=1/(cos2theta)+tan2theta,

=(1+t^2)/(1-t^2)+(2t)/(1-t^2),

=(1+2t+t^2)/(1-t^2),

=(1+t)^2/{(1+t)(1-t)}.

rArr u/1=(1+t)/(1-t).

rArr (u-1)/(u+1)=(2t)/(2)=t=tantheta, as Before!