Given cosx+ cos^2x=1 .......(1)
=>cosx=1-cos^2x
=>cosx=sin^2x
Again from (1)
cos^2x+cosx-1=0
And cosx=1/2(-1+sqrt(1^2-4*1*(-1)))
=>cosx=1/2(-1+sqrt5)
other root
cosx=1/2(-1-sqrt5)<-1->"not possible"
So
sin^12x +sin^10x + 3sin^8x +sin^6x
=(sin^2x)^6 +sin^10x + 3(sin^2x)^4 +sin^6x
= (cosx)^6 +sin^10x + 3(cosx)^4+sin^6x
= cos^6x +sin^6x + 3cos^4x +sin^10x
= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +(sin^2x)^5
=1^3-3cos^2xcosx + 3cos^4x +cos^5x
=1-3cos^3x(1- cosx) +cos^5x
=1-3cos^3x*cos^2x +cos^5x
=1-2cos^5x=1-2(cos^2x)cosx
=1-2(1-cosx)^2*cosx
=1-2cosx+4cos^2x-2cos^3x
=1-2cosx+4cos^2x-2cos^2x*cosx
=1-2cosx+4cos^2x-2(1-cosx)*cosx
=1-2cosx+4cos^2x-2cosx+2cos^2x
=1-4cosx+6cos^2x
=1-4cosx+6(1-cosx)
=7-10cosx
=7-10xx1/2(-1+sqrt5)
=12-5sqrt5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the given expression
= sin^12x +3sin^10x + 3sin^8x +sin^6x
=(sin^2x)^6 +3sin^10x + 3(sin^2x)^4 +sin^6x
= (cosx)^6 +3sin^10x + 3(cosx)^4+sin^6x
= cos^6x +sin^6x + 3cos^4x +3sin^10x
= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +3(sin^2x)^5
=1^3-3cos^2xcosx + 3cos^4x +3cos^5x
=1-3cos^3x(1- cosx) +3cos^5x
=1-3cos^3x*cos^2x +3cos^5x
=1-3cos^5x +3cos^5x
=1