Solve cos^2x+cosx-1=0cos2x+cosx1=0 ?

2 Answers
Dec 13, 2016

Given cosx+ cos^2x=1 .......(1)

=>cosx=1-cos^2x

=>cosx=sin^2x

Again from (1)

cos^2x+cosx-1=0

And cosx=1/2(-1+sqrt(1^2-4*1*(-1)))
=>cosx=1/2(-1+sqrt5)

other root

cosx=1/2(-1-sqrt5)<-1->"not possible"

So

sin^12x +sin^10x + 3sin^8x +sin^6x

=(sin^2x)^6 +sin^10x + 3(sin^2x)^4 +sin^6x

= (cosx)^6 +sin^10x + 3(cosx)^4+sin^6x

= cos^6x +sin^6x + 3cos^4x +sin^10x

= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +(sin^2x)^5

=1^3-3cos^2xcosx + 3cos^4x +cos^5x

=1-3cos^3x(1- cosx) +cos^5x

=1-3cos^3x*cos^2x +cos^5x

=1-2cos^5x=1-2(cos^2x)cosx

=1-2(1-cosx)^2*cosx

=1-2cosx+4cos^2x-2cos^3x

=1-2cosx+4cos^2x-2cos^2x*cosx

=1-2cosx+4cos^2x-2(1-cosx)*cosx

=1-2cosx+4cos^2x-2cosx+2cos^2x

=1-4cosx+6cos^2x

=1-4cosx+6(1-cosx)

=7-10cosx

=7-10xx1/2(-1+sqrt5)

=12-5sqrt5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When the given expression
= sin^12x +3sin^10x + 3sin^8x +sin^6x

=(sin^2x)^6 +3sin^10x + 3(sin^2x)^4 +sin^6x

= (cosx)^6 +3sin^10x + 3(cosx)^4+sin^6x

= cos^6x +sin^6x + 3cos^4x +3sin^10x

= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +3(sin^2x)^5

=1^3-3cos^2xcosx + 3cos^4x +3cos^5x

=1-3cos^3x(1- cosx) +3cos^5x

=1-3cos^3x*cos^2x +3cos^5x

=1-3cos^5x +3cos^5x

=1

Dec 13, 2016

12 - 5 sqrt[5]

Explanation:

Solving

cos^2x+cosx-1=0 we obtain

cosx = 1/2 (-1 pm sqrt[5]).

and

sinx = sqrt(1/2(-1+sqrt(5)))

Putting this results into the big equation

sin^12x+cdots+sin^6x we obtain the answer.

Example

(sqrt[1/2 (-1 + sqrt[5])])^16 = 1/2(47-21sqrt(5))

so the answer is

12 - 5 sqrt[5]

If the big equation were instead

sin^12x + 3 sin^10x + 3 sin^8x + sin^6x

the result would be simply 1