Question #d4016

3 Answers
Dec 15, 2016

Within the domain x in[0,2pi)x[0,2π)
sin(x)-7cos(x)=7color(white)("XX")rarrcolor(white)("XX")x = pi or x~~2.8578 ("radians")sin(x)7cos(x)=7XXXXx=πorx2.8578(radians)

Explanation:

Remember that cos(x)=+-sqrt(1-sin^2(x))cos(x)=±1sin2(x)

Therefore
color(white)("XXX")sin(x)-7cos(x)=7XXXsin(x)7cos(x)=7

color(white)("XXX")rarr sin(x)-7(+-sqrt(1-sin^2(x)))=7XXXsin(x)7(±1sin2(x))=7

color(white)("XXX")rarr sin(x)-7 =7 (+-sqrt(1-sin^2(x)))XXXsin(x)7=7(±1sin2(x))

squaring both sides (caution: extraneous solutions may be introduced at this point)
color(white)("XXX")rarr sin^2(x)-14sin(x)+49=49 * ( 1-sin^2(x))XXXsin2(x)14sin(x)+49=49(1sin2(x))

color(white)("XXX")rarr sin^2(x)-14sin(x) =49sin^2(x)XXXsin2(x)14sin(x)=49sin2(x)

color(white)("XXX")rarr 50sin^2(x)-14sin(x) =0XXX50sin2(x)14sin(x)=0

color(white)("XXX")rarr sin(x)(50sin(x)-14)=0XXXsin(x)(50sin(x)14)=0

color(white)("XXX")rarrXXX
color(white)("XXXXX"){: (sin(x)=0,color(white)("XX")orcolor(white)("XX"),sin(x)=14/50), (x=0 or x=pi,,x=arcsin(14/50) or x=pi-arcsin(14/50)), (,,x~~0.28379 or x~~2.85780 ("radians")) :}

Testing these four possible solutions against the original equation
shows that x=0 and x~~0.28379 are extraneous.

Dec 15, 2016

sinx-7cosx=7

=>sinx-7cosx-7=0

=>2sin(x/2)cos(x/2)-7(cosx+1)=0

=>2sin(x/2)cos(x/2)-7*2cos^2(x/2)=0

=>2cos(x/2)(sin(x/2)-7cos(x/2))=0

So cos(x/2)=0

x/2=(2n+1)pi/2" where "n in ZZ

=>x=(2n+1)pi

Again

sin(x/2)=7cos(x/2)

=>tan(x/2)=7=tanalpha

" where "alpha=tan^-1(7) ~~1.43"radian"

"and when "cos(x/2)!=0

So x/2=npi+alpha " where "n in ZZ

=>x=2npi+2alpha

Dec 15, 2016

The answer is x=2.83rad

Explanation:

We can use

Rsin(x-alpha)=R(sinxcosalpha-cosxsinalpha)

Comparing this to sinx-7cosx

We see that

Rcosalpha=1 and Rsinalpha=7

R^2cos^2alpha+R^2sin^2alpha=1+49=50

R=sqrt50

cosalpha=1/sqrt50 , =>, alpha=1.43rad

sinalpha=7/sqrt50=1.43rad

Therefore

Rsin(x-alpha)=7

sin(x-1.43)=7/sqrt50

x-1.43=1.43

x=2.86

Q.E.D