How can you show #tan^2 x(1+cos2x)=2sin^2x#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Geoff K. Dec 16, 2016 We can use the #color(blue)"double angle identity for cos(2x)"# as well as the #color(green)"ratio identity for tan x"#. Explanation: #tan^2 x (1+color(blue)(cos 2x))= tan^2 x (cancel 1 + color(blue)(2cos^2 x - cancel 1))# #color(white)(tan^2 x (1+cos 2x))= tan^2 x (2 cos^2 x)# #color(white)(tan^2 x (1+cos 2x))= 2color(green)(tan^2 x) cos^2 x# #color(white)(tan^2 x (1+cos 2x))= 2color(green)((sin^2 x / cancel(cos^2 x))) cancel(cos^2 x)# #color(white)(tan^2 x (1+cos 2x))= 2 sin^2 x# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1036 views around the world You can reuse this answer Creative Commons License